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Abstract—Many studies suggest using coverage concepts, such
as branch coverage, as the starting point of testing, while others
as the most prominent test quality indicator. Yet the relationship
between coverage and fault-revelation remains unknown, yielding
uncertainty and controversy. Most previous studies rely on the
Clean Program Assumption, that a test suite will obtain similar
coverage for both faulty and fixed (‘clean’) program versions.
This assumption may appear intuitive, especially for bugs that
denote small semantic deviations. However, we present evidence
that the Clean Program Assumption does not always hold,
thereby raising a critical threat to the validity of previous
results. We then conducted a study using a robust experimental
methodology that avoids this threat to validity, from which our
primary finding is that strong mutation testing has the highest
fault revelation of four widely-used criteria. Our findings also
revealed that fault revelation starts to increase significantly only
once relatively high levels of coverage are attained.

Index Terms—Mutation testing, test effectiveness, code cover-
age, real faults, test adequacy

I. INTRODUCTION

The question of which coverage criterion best guides soft-
ware testing towards fault revelation remains controversial
and open [1]–[5]. Previous research has investigated the cor-
relation between various forms of structural coverage and
fault revelation using both real and simulated faults (seeded
into the program under test as mutants). Determining the
answer to the test coverage question is important because
many software testing approaches are guided by coverage [6]–
[9], and the industry standards used by practising software
engineers mandate the achievement of coverage [10], [11].
Nevertheless, the findings of the studies hitherto reported in
the literature have been inconclusive, with the overall result
that this important question remains unanswered.

Most previous studies make an important assumption, the
veracity of which has not been previously investigated. We
call this assumption the ‘Clean Program Assumption’. The
assumption is that test suites are assessed based on the
coverage they achieve on clean programs, which do not contain
any known faults. This practice might be problematic when
using faulty versions (in order to check the fault-revealing
potential of the test suites) since test suites are assessed on
each of the faulty versions and not the clean program from
which (and for which) the coverage was measured.

Of course, it is comparatively inexpensive (and therefore
attractive to experimenters) to use a single test suite for the
clean program, rather than using separate test suites for each
of the faulty versions. However, a test suite that is adequate for
the clean program may be inadequate for some of the faulty
versions, while test suites that have been rejected as inadequate
for the clean program may turn out to be adequate for some
of the faulty versions. Furthermore, the coverage achieved by
inadequate test suites may differ between the clean version of
the program and each of its faulty versions.

These differences have not previously been investigated
and reported upon; if they prove to be significant, then that
would raise a potential threat to the scientific validity of
previous findings that assume the Clean Program Assumption.
We investigated this assumption and found strong empirical
evidence that, it does not always hold; there are statistically
significant differences between the coverage measurements for
clean and faulty versions of the programs we studied.

Given that we found that we cannot rely on the Clean
Program Assumption, we then implemented a robust method-
ology, in which the test suite for each test adequacy criteria
is recomputed for each of the faulty versions of the program
under test. We studied statement, branch, strong and weak
mutation criteria, using a set of real-world faults, recently
made available [12], located in 145,000 lines of C code spread
over four different real-world systems.

We used systems with mature test suites, which are aug-
mented, both by using the popular test data generation tool
KLEE [13] and by hand, to ensure the availability of a high
quality pool of test data from which to draw test suites.
Unfortunately, such a high quality test pool cannot yet be
guaranteed using automated test data generation tools alone,
partly because of the inherent undecidability of the problem,
and partly because of the limitations of current tools [14],
[15]. Nevertheless, it is important for us to have such a high
quality test pool in order to allow us to sample multiple test
suites (related to the faults studied) and to achieve different
experimentally-determined levels of coverage, when control-
ling for test suite size. Using randomised sampling from the
augmented test pool, we were able to generate test suites
that achieve many different coverage levels, thereby placing
coverage level under experimental control.



Perhaps the most surprising result from our study is that we
find evidence for a strong connection only between coverage
attainment and fault revelation for one of the four coverage
criteria: strong mutation testing. For statement, branch and
weak mutation testing, we found that increased coverage has
little or no effect on fault revelation. This is a potentially
important finding, notwithstanding the ‘Threats to Validity’
of generalisation discussed at the end of this paper, especially
given the emphasis placed on branch coverage by software
tools and industrial standards. While some previous studies
have made similar claims (for branch and block coverage
[16]), these conclusions were subsequently contradicted [1],
[4], [17], [18].

One of the other interesting (and perhaps surprising) find-
ings of our study is that the relationship between strong
mutation and fault revelation exhibits a form of ‘threshold
behaviour’. That is, above a certain threshold, we observed a
strong connection between increased coverage and increased
fault revelation. However, below this threshold level, the
coverage achieved by a test suite is simply irrelevant to
its fault-revealing potential. This ‘threshold observation’ and
the apparent lack of connection between fault revelation and
statement/branch/weak mutation coverage may go some way
to explaining some of the dissimilar findings from previous
studies (and may partially reduce the apparent controversy).
According to our results, any attempt to compare inade-
quate test suites that fail to reach threshold coverage may
be vulnerable to ‘noise effects’: two studies with below-
threshold coverage may yield different findings, even when
the experimenters follow identical experimental procedures.

More research is needed in this important area to fully
understand this fundamental aspect of software testing, and
we certainly do not claim to have completely answered all
questions in this paper. We do, however, believe our findings
significantly improve our understanding of coverage criteria,
their relationship to each other and to fault revelation. Our
primary contributions are to expose and refute the Clean
Program Assumption, and to present the results of a larger-
scale empirical study that does not rest on this assumption. The
most important finding from this more robust empirical study
is the evidence for the apparent superiority of strong mutation
testing and the observation of threshold behaviour, below
which improved coverage has little effect on fault revelation.

II. TEST ADEQUACY CRITERIA

Test adequacy criteria define the requirements of the testing
process [19]. Goodenough and Gerhart [20] define test criteria
as predicates stating that a criteria captures “what properties of
a program must be exercised to constitute a thorough test, i.e.,
one whose successful execution implies no errors in a tested
program”. As a result, they guide testers in three distinct ways
[19]: by pointing out the elements that should be exercised
when designing tests, by providing criteria for terminating
testing (when coverage is attained), and by quantifying test
suite thoroughness.

Although there is a large body of work that crucially relies
upon test criteria [15], [21], there remain comparatively few
studies in the literature that address questions related to actual
fault revelation (using real faults) to reliably confirm the
coverage-based assessment of test thoroughness. We therefore,
empirically examine the ability of criteria-guided testing in
uncovering faults. We investigate four popular test criteria:
the main two structural criteria (namely statement and branch
testing), and the main two fault-based criteria (namely weak
and strong mutation testing).

A. Statement and Branch Adequacy Criteria

Statement testing (aka statement coverage) relies on the idea
that we cannot be confident in our testing if we do not, at
least, exercise (execute) every reachable program statement at
least once. This practice is intuitive and is widely-regarded as
a (very) minimal requirement for testing. However, programs
contain many different types of elements, such as predicates,
so faults may be exposed only under specific conditions,
that leave them undetected by statement adequate test suites.
Therefore, stronger forms of coverage have been defined [19].
One such widely-used criteria, commonly mandated in indus-
trial testing standards [10], [11] is branch coverage (or branch
testing). Branch testing asks for a test suite that exercises every
reachable branch of the Control Flow Graph of the program.
Branch testing is stronger to statement testing, which only asks
for a test suite that exercises every node of the graph.

B. Mutation-Based Adequacy Criteria

Mutation testing deliberately introduces artificially-
generated defects, which are called ‘mutants’. A test case
that distinguishes the behaviour of the original program and
its mutant is said to ‘kill’ the mutant. A mutant is said to
be weakly killed [9], [31], [32], if the state of computation
immediately after the execution of the mutant differs from
the corresponding state in the original program. A mutant
is strongly killed [9], [31], [32] if the original program and
the mutant exhibit some observable difference in their output
behaviour. Strong mutation does not subsume weak mutation
because of potential failed error propagation [9], [33], which
may cause state differences to be over-written by subsequent
computation.

For a given set of mutants, M , mutation coverage entails
finding a test suite that kills all mutants in M . The proportion
of mutants in M killed by a test suite T is called the mutation
score of T . It denotes the degree of achievement of mutation
coverage by T , in the same way that the proportion of branches
or statements covered by T denotes its degree of branch or
statement adequacy respectively.

Previous research has demonstrated that mutation testing
results in strong test suites, which have been empirically
observed to subsume other test adequacy criteria [32]. There
is also empirical evidence that mutation score correlates with
actual failure rates [4], [30] indicating that, if suitable exper-
imental care is taken, then these artificially-seeded faults can
be used to assess the fault revealing-potential of test suites.



TABLE I
SUMMARY OF PREVIOUS STUDIES ON THE RELATIONSHIP OF TEST CRITERIA AND FAULTS.

Author(s) [Reference] Year Largest
Subject Language Test Criterion Fault Types Summary of Primary Scientific Findings

Frankl & Weiss [22], [23] ’91, ’93 78 Pascal branch, all-uses real faults All-uses relates with test effectiveness, while branch does not.

Offutt et al. [24] ’96 29 Fortran, C all-uses, mutation seeded faults Both all-uses and mutation are effective but mutation reveals more faults.

Frankl et al. [25] ’97 78 Fortran,
Pascal all-uses, mutation real faults Test effectiveness (for both all-uses and mutation) is increasing at higher

coverage levels. Mutation performs better.

Frankl & Iakounenko [5] ’98 5,000 C all-uses, branch real faults Test effectiveness increases rapidly at higher levels of coverage (for both
all-uses and branch). Both criteria have similar test effectiveness.

Briand & Pfahl [16] ’00 4,000 C block, c-uses, p-uses,
branch simulation There is no relation (independent of test suite size) between any of the four

criteria and effectiveness

Andrews et al. [4] ’06 5,000 C block, c-uses, p-uses,
branch real faults Block, c-uses, p-uses and branch coverage criteria correlate with test

effectiveness.

Namin & Andrews [17] ’09 5,680 C block, c-uses, p-uses,
branch seeded faults Both test suite size and coverage influence (independently) the test

effectiveness

Li et al. [26] ’09 618 Java prime path, branch,
all-uses, mutation seeded faults Mutation testing finds more faults than prime path, branch and all-uses.

Papadakis & Malevris [9] ’10 5,000 C Mutant sampling, 1st &
2nd order mutation seeded faults 1st order mutation is more effective than 2nd order and mutant sampling.

There are significantly less equivalent 2nd order mutants than 1st order ones.

Ciupa et al. [27] ’09 2,600 Eiffel Random testing real faults Random testing is effective and has predictable performance.

Wei et al. [28] ’12 2,603 Eiffel Branch real faults Branch coverage has a weak correlates with test effectiveness.

Hassan & Andrews [29] ’13 16,800 C, C++,
Java

multi-Point Stride, data
flow, branch mutants

Def-uses is (strongly) correlated with test effectiveness and has almost the
same prediction power as branch coverage. Multi-Point Stride provides better
prediction of effectiveness than branch coverage.

Gligoric et al. [1], [18] ’13, ’15 72,490 Java, C AIMP, DBB, branch,
IMP, PCC, statement mutants There is a correlation between coverage and test effectiveness. Branch

coverage is the best measure for predicting the quality of test suites.

Inozemtseva & Holmes [3] ’14 724,089 Java statement, branch,
modified condition mutants There is a correlation between coverage and test effectiveness when ignoring

the influence of test suite size. This is low when test size is controlled.

Just et al. [30] ’14 96,000 Java statement, mutation real faults Both mutation and statement coverage correlate with fault detection, with
mutants having higher correlation.

Gopinath et al. [2] ’14 1,000,000 Java statement, branch,
block, path mutants There is a correlation between coverage and test effectiveness. Statement

coverage predicts best the quality of test suites.

This paper ’17 83,100 C statement, branch, weak
& strong mutation real faults

There is a strong connection between coverage attainment and fault revelation
for strong mutation but weak for statement, branch and weak mutation. Fault
revelation improves significantly at higher coverage levels.

C. Previous Empirical Studies

Table I summarises the characteristics and primary scientific
findings of previous studies on the relationship between test
criteria and fault detection. As can be seen, there are three
types of studies, those that use real faults, seeded faults and
mutants. Mutants refer to machine-generated faults, typically
introduced using syntactic transformations, while seeded faults
refer to faults placed by humans.

One important concern regards the Clean Program Assump-
tion when using either seeded or mutant faults or both. In
principle most of the previous studies that used seeded or
mutant faults assume the Clean Program Assumption as their
experiments were performed on the original (clean) version
and not on the faulty versions. This is based on the intuitive
assumption that as artificial faults denote small syntactic
changes they introduce small semantic deviations. Our work
shows that this assumption does not hold in the case of real
faults and thus, leaves the case of artificial faults open for
future research. Though, previous research has shown that
higher order (complex) mutants [9], [34] are generally weaker
than first order (simple) ones and that they exhibit distinct
behaviours [35], which implies that the assumption plays an
important role in the case of artificial faults.

Only the studies of Frankl and Weiss [22], [23], Frankl et
al. [25], Frankl and Iakounenko [5], Ciupa et al. [27] and Wei
et al. [28] do not assume the Clean Program Assumption.
Unfortunately, all these studies have limited size and scope
of their empirical analysis and only the work of Frankl et al.
[25] investigates mutation. Generally, only three studies (Offutt
et al. [24], Frankl et al. [25] and Li et al. [26]) investigate
the fault revelation question for mutation, but all of them use
relatively small programs and only the work of Frankl et al.
[25], uses real faults, leaving open the questions about the
generalisability of their findings.

The studies of Andrews et al. [4] and Just et al. [30] used
real faults to investigate whether mutants or other criteria can
form substitutes for faults when conducting test experiments.
This question differs from the fault revelation question because
it does not provide any answers concerning test criteria fault
revelation. Also, both these studies make the Clean Program
Assumption and do not control for test suite size.

Overall, although the literature contains results covering a
considerable number of test adequacy criteria, including the
most popular (branch, statement and mutation-based criteria),
our current understanding of these relationships is limited and
rests critically upon the Clean Program Assumption.



III. RESEARCH QUESTIONS

Our fist aim is to investigate the validity of the ‘Clean
Program Assumption’, since much of our understanding of
the relationships between test adequacy criteria rests upon
the validity of this assumption. Therefore, a natural first
question to ask is the extent to which experiments with faults,
when performed on the “clean” (fixed) program versions,
provide results that are representative of those that would have
been observed if the experiments had been performed on the
“faulty” program versions. Hence we ask:

RQ1: Does the ‘Clean Program Assumption’ hold?
Given that we did, indeed, find evidence to reject the Clean

Program Assumption, we go on to investigate the relationship
between achievement of coverage and fault revelation, using
a more robust experimental methodology that does not rely
upon this assumption. Therefore, we investigate:

RQ2: How does the level of fault revelation vary as the
degree of the coverage attained increases?

Finally, having rejected the Clean Program Assumption,
and investigated the relationship between fault revelation for
adequate and partially adequate coverage criteria, we are in
a position to compare the different coverage criteria to each
other. Therefore we conclude by asking:

RQ3: How do the four coverage criteria compare to each
other, in terms of fault revelation, at varying levels
of coverage?

The answers to these questions will place our overall
understanding of the fault-revealing potential of these four
widely-used coverage criteria on a firmer scientific footing,
because they use real-world faults and do not rely on the Clean
Program Assumption.

IV. RESEARCH PROTOCOL

Our study involves experiments on mature real-world
projects, with complex real faults, developer, machine-
generated and manually-written tests. All these tests yields a
pool from which we sample, to experimentally select different
coverage levels, while controlling for test suite size (number of
test cases). Our experimental procedure follows the following
five steps:

1) We used CoREBench, a set of real faults that have
been manually identified and isolated, using version
control and bug tracking systems in the previous work
by Böhme and Roychoudhury [12]. Böhme and Roy-
choudhury with the introduction of CoREBench have
created a publicly available set of real-world bugs on
which others, like ourselves, can experiment.

2) We extracted the developer tests for each of the faults
in CoREBench.

3) We generated test cases covering (at least partially) all
the faults using the state-of-the-art dynamic symbolic
execution test generation tool, KLEE [13], [36].

4) We manually augmented the developer and automati-
cally generated test suites that were obtained in the
previous steps. To do so we used the bug reports of the

TABLE II
THE SUBJECT PROGRAMS USED IN THE EXPERIMENTS. FOR EACH OF

THEM, THE NUMBER OF TEST CASES (TC), THEIR SIZE IN LINES OF CODE
AND NUMBER OF CONSIDERED FAULTS ARE PRESENTED.

Program Size Developer TC KLEE TC Manual TC Faults

Coreutils 83,100 4,772 13,920 27 22
Findutils 18,000 1,054 3,870 7 15
Grep 9,400 1,582 4,280 37 15
Make 35,300 528 138 25 18

faults and generated additional test cases to ensure that
each fault can potentially be revealed by multiple test
cases from the test pool. The combined effect of Steps
2, 3 and 4 is to yield an overall test pool that achieves
both high quality and diversity, thereby facilitating the
subsequent selection step.

5) We perform statement, branch, weak and strong muta-
tion testing, using multiple subsets selected from the test
pool (constructed in the Steps 2, 3 and 4), using sam-
pling with uniform probability. Test suites for varying
degrees of coverage according to each one of the four
criteria were constructed for all faulty programs, one
per fault in CoREBench, in order to avoid the Clean
Program Assumption.

A. Programs Used

To conduct our experiments it is important to use real-world
programs that are accompanied by relatively good and mature
test suites. Thus, we selected the programs composing the
CoREBench [12] benchmark: “Make”, “Grep”, “Findutils”,
and “Coreutils”. Their standardized program interfaces were
helpful in our augmentation of the developers’ initial test
suites, using automated test data generation. Furthermore, the
available bug reports for these programs were helpful to us in
the laborious manual task of generating additional test cases.

Table II records details regarding our test subjects. The
size of these programs range from 9 KLoC to 83KLoC and
all are accompanied by developer test suites composed of
numerous test cases (ranging from 528 to 4,772 test cases).
All of the subjects are GNU programs, included in GNU
operating systems and typically invoked from the command
line (through piped commands). Grep is a tool that processes
regular expressions, which are used for text matching and
searching. The Make program automates the source code
building process. Findutils and Coreutils are each collections
of utilities for, respectively, searching file directories and
manipulating files and text for the UNIX shell.

B. CoREBench: realistic, complex faults

To conduct this study we need a benchmark with real-world
complex faults that can be reliably used to evaluate and com-
pare the four coverage criteria we wish to study. Unfortunately
benchmarks with real errors are scarce. CoREBench [12]
is a collection of 70 systematically isolated faults, carefully
extracted from the source code repositories and bug reports of
the projects we study.



The most commonly-used benchmarks are the Siemens
Suite and the Software Infrastructure Repository SIR [37],
[38], but sadly neither can help us to answer our particular
chosen research questions. While the Siemens suite has been
widely used in previous studies, the degree to which general-
isation is possible remains limited, because the programs are
small, and cannot truly be said to be representative of real-
world systems. The SIR repository overcomes this limitation,
because it contains real-world programs, and is a very valuable
resource. Nevertheless, many of the faults collected for the
SIR programs are artificially seeded faults. This repository is
thus less relevant to our study, because we seek to study the
relationship between such artificially seeded faults and real
faults as part of our set of research questions.

The CoREBench benchmark we chose to use was built by
analysing 4,000 commits, which led to the isolation and vali-
dation (through test cases) of 70 faults [12]. Every fault was
identified by exercising the project commits with validating
test cases that reveal the faults. Thus, the test cases pass on
the versions before the bug-introducing commit and fail after
the commit. Also, the test cases pass again after the fixing
commit. Further details regarding the benchmark can be found
in the CoREBench paper by Böhme and Roychoudhury [12]
and also on its accompanying website1.

When conducting our analyses, we also verified the faulty
and fixed versions using both the developer and additionally
generated (either manually or automatically) test cases (details
regarding the test suites we used can be found in Sec-
tion IV-C). As the “faulty” and “fixed” program versions were
mined from project repositories by analysing commits, they
could have differences that are irrelevant to the faults we study.
Thus, they could potentially bias our results because they
might arbitrarily elevate the number of program elements to be
covered (due to altered code unrelated to the fault). To avoid
this, we checked and removed irrelevant code from the few
cases we found, using the test suites as behaviour-preserving
indicators (we used delta debugging [39] to minimise the
differences between the “faulty” and “fixed” versions).

Finally, we excluded nine faults from our analysis due to
technical problems. Faults with CoREBench identifiers 57 and
58 for the Make program failed to compile in our environment.
Also we had technical problems forming the annotations for
(Make) faults with identifiers 64 and 65 and thus, KLEE could
not create additional test suites for these faults. Fault 42 of
Grep, 33 and 37 of the Findutils and 60, 62 of Make took us
so much execution time that we were forced to terminate their
execution after 15 days.

C. Test Suites Used

The developer test suites for all the projects we studied were
composed of approximately 58,131 tests in total. As these were
not always able to find the faults (because in this case bugs
would have been noticed before being reported), the authors
of CoREBench designed test cases that reveal them (typically

1http://www.comp.nus.edu.sg/∼release/corebench/

only one test to expose each bug). However, we not only need
to expose the bugs, but also to expose them multiple times
in multiple different ways in order to allow our uniform test
suite selection phase to benefit from a larger and more diverse
pool from which to select.

Therefore, to further strengthen the test suites used in our
study, we augment them in a two-phase procedure. In the first
phase we used KLEE, with a relatively robust timeout limit of
600 seconds per test case, to perform a form of differential
testing [40] called shadow symbolic execution [36], which
generates 22,208 test cases. Shadow symbolic execution gen-
erates tests that exercise the behavioural differences between
two different versions of a program, in our case the faulty
and the fixed program versions. We guided shadow symbolic
execution by manual annotations to the subject programs that
have no side-effects.

Unfortunately, the current publicly available version of the
tool KLEE does not yet handle calls to system directories, i.e.,
test cases involving system directories, rendering it inapplica-
ble to many cases of the Findutils and Make programs. Also,
due to the inherent difficulty and challenge of the test data
generation problem, we could not expect, and did not find, that
KLEE was able to expose differences between every one of the
pairs of original and faulty programs. Therefore, in a second
phase we manually augment the test suites, using the bug
reports (following the process of Böhme and Roychoudhury
[12]), designing 96 additional test cases that reveal (and that
fail to reveal) the bugs. We manually generate tests in all
situations where there are either fewer than five test cases that
reveal a given fault or fewer than five that cover the fault but
fail to reveal it, thereby ensuring that all faults have at least
five revealing and five non-revealing test cases.

Our experiments were performed at the system level and
involved 323,631 mutants, 53,716 branches and 77,151 state-
ments. Every test exercises the entire program as invoked
through the command line (rather than unit testing, which is
less demanding, but vulnerable to false positives [41]). As
a result, both automated and manual test generation were
expensive. For example, the machine time that was spent on
symbolic execution took approximately 1 day, on average,
for each studied bug. All the test execution needed for our
experiment took approximately 480 days of computation time
to complete (of single-threaded analysis).

Following the recommendations of Xuan et al. [42] we
refactored2 the test cases we used to improve the accuracy
of our analysis. This practice also helps to elevate the perfor-
mance of symbolic execution [43]. Finally, each test ‘case’
is essentially a test input that needs a test oracle [44], in
order to determine its corresponding output. Fortunately, in
our case, we have a reliable and complete test oracle: the
output differences between the fixed and the faulty versions.

Overall, the coverage scores levels achieved by the whole
test pool are presented in Figure 1.

2Many test cases form a composition of independent (valid) test cases. We
split these tests and formed multiple smaller and independent ones, which
preserve their semantics.

http://www.comp.nus.edu.sg/~release/corebench/


D. Tools for Mutation Testing and Coverage Measurement

To conduct our experiment we used several tools in ad-
ditional to the shadow symbolic execution [36] feature im-
plemented3 on top of KLEE [13]. To measure statement and
branch coverage we used the GNU Gcov utility. To perform
mutation, we built a new tool on top of the Frama-C framework
[45] as existing tools are not robust and scalable enough to be
applied on our subjects. This tool supports both weak and
strong mutation, by encoding all the mutants as additional
program branches [46]–[48] (for weak mutation testing), and
uses program wrappers, similar to those used by shadow
symbolic execution, that automatically and precisely record
the program outputs (for strong mutation testing).

Our mutation tool reduces the execution cost of strong
mutation by checking for strong death, only those mutants
that were already weakly killed [9], since any mutant that is
not weakly killed by a test case cannot be strongly killed, by
definition. We also used the recently-published TCE (Trivial
Compiler Equivalence) method [49] to identify and remove
strongly equivalent and duplicated mutants, detected by TCE.

We use a timeout in order to avoid the infinite loop prob-
lem: a mutant may lead to an infinite loop, which evidently
cannot be detectable in general, due to the undecidability of
the halting problem. In this way, we are treating (sufficient
difference of) execution time as an observable output for the
purpose of strong mutation testing. Thus, a mutant is deemed
to be distinct from the original program if its execution differs
by more than two times the execution of the original program.

The mutation tool includes the (large and varied) set of
mutant operators used in previous research [4], [30], [49].
Specifically, we used mutants related to arithmetic, relational,
conditional, logical, bitwise, shift, pointers and unary opera-
tors. We also used statement deletion, variable and constant
replacement.

E. Analyses Performed on the Test Suites

To answer our research questions we performed the follow-
ing analysis procedure. We constructed a coverage-mutation
matrix that records the statements and branches covered and
mutants killed by each test case of the test pool.

3http://srg.doc.ic.ac.uk/projects/shadow/
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Fig. 1. The test pool with overall coverage score values.

For RQ1 we select arbitrary test sets, execute them in
both the fixed (clean) and faulty versions and measure their
coverage and mutation scores. We used the Wilcoxon test
to compare these values. In order to facilitate inferential
statistical testing, we repeat the sampling process 10,000 times
so that, for each fault and for each coverage criterion, we
perform 10,000 testing experiments, each with a different
sampled test suite. The Wilcoxon test is a non-parametric test
and thus, it is suitable for samples having unknown distribution
[50], [51]. The statistical test allows us to determine whether or
not the Null Hypothesis (that there is no difference between
the test coverage achieved for the clean and faulty versions
of the program) can be rejected. If the Null Hypothesis is
rejected, then this provides evidence that the Clean Program
Assumption does not hold.

However, statistical significance does not imply practical
significance; even when the assumption does not hold, if the
effect of assuming it is found to be always small, then the per-
nicious effects (on previous and potential future experiments)
may also be small. Therefore, we also measured the Vargha
Delaney effect size Â12 [52], which quantifies the size of the
differences (statistical effect size) [50], [51]. The Â12 effect
size is simple and intuitive. It measures the probability that
values drawn from one set of data will have a different value
to those drawn from another. Â12 = 0.5 suggests that the data
of the two samples tend to be the same. Values of Â12 higher
than 0.5 indicate that the first dataset tends to have higher
values, while values of Â12 lower than 0.5 indicate that the
second data set tends to have higher values.

To study further the differences between the faulty and
the fixed program versions, we use the notion of coupling
[30], [34], [53]. A fault is coupled with a mutant, statement
or branch if every test that kills the mutant (respectively
covers the statement or branch) also reveals the fault. Thus,
if, for example, a statement is coupled with a fault, then
every test set that covers this statement will also reveal this
fault. Unfortunately, computing the exact coupling relations
is infeasible since this would require exhaustive testing (to
consider every possible test set). However, should we find
that a fault, f remains uncoupled with all mutants, statements
or branches then this provides evidence that the adequacy
criterion is not particularly good at uncovering f . Based on the
coupled faults we can provide further evidence related to the
Clean Program Assumption. If we observe many cases were
faults are coupled in one version (either faulty or fixed) while
not in the other, then we have evidence against the assumption.

To answer RQ2 and RQ3 we examined the relation between
coverage score and fault revelation by selecting test sets of
equal size (number of tests). We thus, select 10,000 suites of
sizes 2.5% 5%, 7.5%, 10%, 12.5%, and 15% of the test pool
(composed of all developer, machine and manually generated
test cases). Then, for every score, ci, in the range [0, maximum
recorded score], we estimate the average fault revelation rate
for all the tests that have coverage values at least ci. This rate
estimates the probability that an arbitrary ci%-adequate test
suite detects a fault.
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(a) p-values for all scores
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(b) Â12-values for all scores

Fig. 2. RQ1: Comparing the “Faulty” with the “Clean” (‘Fixed’) programs. Our results show that there is statistically significant difference between the
coverage values attained in the “Faulty” and “Clean” programs (subfigure 2(a)) with effect sizes that can be significant (subfigure 2(b)).

We then compare these fault revelation probabilities for
different levels of minimal coverage attainment. Ideally, we
would like to control both test size and coverage across the
whole spectrum of theoretically possible coverage levels (0-
100%). However, since coverage and size are dependent it
proved impossible to do this, i.e., large test sizes achieve
high coverage, but not lower, while smaller sizes achieve
lower coverage but not higher. Therefore, to perform our
comparisons we record the highest achieved scores per fault
we study. For RQ2 we compared the fault revelation of scores
for arbitrary selected test suites with those of the highest 20%,
10%, and 5% coverage attainment (of same size). For RQ3 we
compared the fault revelation of the criteria when reaching
each level of coverage in turn. To perform the comparisons
we used three metrics: a Wilcoxon test to compare whether
the observed differences are statistically significant, the Vargha
Delaney Â12 for the statistical effect size of the difference
and the average fault revelation differences. Finally, to further
investigate RQ3, we also compare the number of faults that
are coupled with the studied criteria according to our test pool.

V. RESULTS

A. RQ1: Clean Program Assumption

The Clean Program Assumption relies on the belief that
the influence of faults on the program behaviour is small.
However, white-box adequacy criteria depend on the elements
to be tested [31]. Thus, faulty and clean programs have
many different test elements simply because their code differs.
Unfortunately, applying experiments to the clean version does
not tell us what would happen on the program execution (of
the same test) of the faulty program versions. Therefore, we
seek to investigate the differences in the coverage scores of
test suites when applied to the clean and the faulty programs.

The results of our statistical comparison (p-values) between
the coverage scores obtained from the faulty and clean pro-
grams are depicted in Figure 2(a). These data show that all
measures differ when applied on the clean rather than the
faulty program versions.

These differences are significant (at the 0.05 significance
level) for all four criteria and for 86%, 74%, 66% and 60%
of the cases for strong mutation, weak mutation, branch and
statement coverage respectively. Strong mutation differences
are more prevalent than those of the other criteria indicating
that the Clean Program Assumption is particularly unreliable
for this coverage criterion.

The results related to the effect sizes are depicted in Figure
2(b), revealing that large effect sizes occur on all four criteria.
Strong mutation has larger effect sizes than the other criteria,
with some extreme cases having very high or low Â12 values.

One interesting observation from the above results is that
the faults do not always have the same effect. Sometimes they
decrease and sometimes they increase the coverage scores. It
is noted that the effect sizes with Â12 values higher than 0.5
denote an increase of the coverage, while below 0.5 denote
a decrease. Therefore, the effect of the bias is not consistent
and thus, not necessarily predictable.

To further investigate the nature of the differences we mea-
sure the couplings between statements, branches and mutants
with the faults. Figure 3 presents a Venn diagram with the
number of coupled faults in the “Faulty” and the “Clean”
versions. We observe that 10, 12, 6, and 4 couplings (represent
16%, 20%, 10% and 7% of the considered faults) are impacted
by the version differences when performing statement, branch,
weak mutation and strong mutation testing.

We also observe that for statement, branch, weak and strong
mutation, 1, 2, 2, and 2 faults are coupled only to test criteria
elements on the faulty versions, while 9, 10, 4 and 2 faults
only coupled on the clean versions. Interestingly, in the clean
versions branch coverage performs better than weak mutation
(couples with 37 faults, while weak mutation with 33), while
in the faulty version it performs worst (couples with 29,
while weak mutation with 31). These data, provide further
evidence that results drawn from the two programs can differ
in important ways, casting significant doubts on the reliability
of the Clean Program Assumption.



TABLE III
THE INFLUENCE OF COVERAGE THRESHOLDS ON FAULT REVELATION FOR TEST SUITE SIZE 7.5% OF THE TEST POOL. TABLE ENTRIES ON THE LEFT PART

RECORD FAULT REVELATION AT HIGHEST X% COVERAGE LEVELS AND ON THE RIGHT PART THE RESULTS OF A COMPARISON OF THE FORM “RAND”
(RANDOMLY SELECTED TEST SUITES) VS “HIGHEST X%” (TEST SUITES ACHIEVING THE HIGHEST X% OF COVERAGE), E.G., FOR BRANCH AND HIGHEST

20% THE Â12 SUGGESTS THAT BRANCH PROVIDES A HIGHER FAULT REVELATION IN ITS LAST 20% COVERAGE LEVELS IN 53% OF THE CASES WITH
AVERAGE FAULT REVELATION DIFFERENCE OF 1.4%.

Test Criterion
Av Fault Revelation rand vs. highest 20% rand vs. highest 10% rand vs. highest 5%

highest 20% highest 10% highest 5% p − value Â12 Av diff p − value Â12 Av diff p − value Â12 Av diff

Statement 0.518 0.535 0.553 8.21E-03 0.478 -0.009 1.25E-03 0.457 -0.025 8.97E-04 0.438 -0.043

Branch 0.524 0.542 0.564 1.94E-05 0.467 -0.015 6.24E-05 0.452 -0.033 4.73E-06 0.421 -0.055

Weak Mutation 0.510 0.535 0.555 9.04E-02 0.498 -0.001 2.25E-02 0.472 -0.026 4.74E-04 0.452 -0.045

Strong Mutation 0.565 0.639 0.684 9.39E-06 0.431 -0.057 7.20E-07 0.367 -0.130 1.60E-07 0.340 -0.176

B. RQ2: Fault revelation at higher levels of coverage

The objective of RQ2 is to investigate whether test suites
that reach higher levels of coverage (for the same test suite
size) also exhibit higher levels of fault revelation. To answer
this question we selected 10,000 arbitrary test suites (per fault
considered) using uniform sampling so that they all have the
same test size. We then compare their fault revelation with that
of the tests suites that achieve the highest levels of coverage.
Thus, we compare with test suites that lie in the top 5%, 10%
and 20% of coverage, to investigate different levels of maximal
coverage attainment.

Table III records the results for the controlled test size equal
to 7.5% of the test pool, which are representative of those we
attained with the other sizes, i.e., 2.5%, 5%, 10%, 12.5% and
15%. Overall, our data demonstrate that all criteria exhibit
minor improvement in their fault revelation when considering
the threshold of the highest 20% (all Â12 values are above the
0.4). The results are even worse for lower coverage thresholds,
i.e., when considering the highest 25%, 30% etc. In practical
terms, the fact that the fault revelation differences are small,
indicates that test sets having coverage values lying within the
highest 20% are those that reveal significantly more faults than
arbitrary test sets of the same size.

The surprising finding is that fault revelation improves
slightly when test suites achieve the top 20% of the levels
of coverage for a given test suite size for all the four criteria.
However, for strong mutation, we do observe more important
differences when the top 10% and the top 5% of coverage are
attained. Furthermore, for strong mutation, the average fault
revelation rate was 5% higher than the arbitrary test sets (for
the highest 20%). This increases to approximately 13% and
18% when considering the test suites that had the highest 10%
and 5% coverage attainment.

As can also be seen from the results, confining our attention
to only the top 10% (and even the top 5%) levels of coverage
attainable for a given test suite size produce only minor
improvements in fault revelation for the other three criteria.
That is, test suites with the higher 10% and higher 5% of
coverage attainment for statement, branch and weak mutation
in Table III do not exhibit practical improvements on the fault
revelation compared to arbitrary test suites of the same size
(the lowest Â12 is 0.421).
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Fig. 3. Fault coupling in the ‘Faulty’ and ‘Clean’ versions.

By contrast, test suites that lie within the highest 10% and
5% for strong mutation do achieve significantly higher fault
revelation than arbitrary test suites of the same size. For both
the 10% and 5% thresholds, the differences exhibit relatively
strong effect sizes (the Vargha Delaney effect size measures, of
0.340 and 0.367 respectively, which are noticeably lower than
0.50). Furthermore, at the highest 5% the p-value is lowest
and the effect size largest.

Taken together, these results provide evidence that test suites
that achieve strong mutation coverage have significantly higher
fault revelation potential than those that do not, while the
improvements for statement, branch and weak mutation are
small. This result suggest that coverage should be used only as
the starting point of testing and not as a test quality indicator.
Finally, we notice that relatively high levels of strong mutation
are required (top 10%) for this effect to be observed; below this
threshold level, differences between arbitrary and (partially)
strong mutation adequate test suites are less important.



TABLE IV
COMPARING FAULT REVELATION FOR THE HIGHEST 5% COVERAGE

THRESHOLD AND TEST SUITE SIZE OF 7.5% OF THE TEST POOL.

Criteria comparison p − val Â12 Av Fault Revelation Diff

Strong Mut vs Statement 2.61E-05 0.623 0.132
Strong Mut vs Weak Mut 2.23E-07 0.626 0.130
Strong Mut vs Branch 8.16E-04 0.614 0.120
Weak Mut vs Statement 4.65E-01 0.490 0.002
Weak Mut vs Branch 7.23E-02 0.474 -0.010
Branch vs Statement 3.37E-04 0.517 0.012

C. RQ3: Fault Revelation of Statement, Branch, Weak and
Strong Mutation

RQ2 compared arbitrary test suites with higher adequacy
test suites of the same size for each coverage criterion. This
answered the within-criteria question, for each criterion, of
whether increasing coverage according to the criterion is bene-
ficial. However, it cannot tell us anything about the differences
in the faults a tester would observe between criteria, a question
to which we now turn.

Table IV reports the differences in pairwise comparisons
between the four criteria, for test suites containing 7.5% of the
overall pool of test cases available; the same size test suites we
used to answer RQ2. Results for other sizes of test suites are
similar, but space does not permit us to present them all here.
All the differences are statistically significant, the p-values are
lower that the 0.05 level, except from the differences of ‘weak
mutation - Statement’ and ‘weak mutation - branch’.

The results from this analysis suggest that, in terms of fault
revelation, there are differences between statement, branch and
the weak mutation, when compared to one another. However,
these are small (as measured by the p and Â12 values).
The results also indicate that strong mutation significantly
outperforms all other criteria, i.e., weak mutation, branch and
statement coverage, with fault revelation scores that are, on
average, at least 12% higher. Figure 4 visualises these results
(fault revelation of the four criteria and randomly selected test
suites) and demonstrate the superiority of strong mutation over
the other criteria.
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Fig. 4. Fault Revelation of the studied criteria for the highest 5% coverage
threshold and test suite size of 7.5% of the test pool.
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Fig. 5. Fault coupling between the studied criteria.

Finally, Figure 5 shows the faults coupled uniquely (and
jointly) to each of the four adequacy criteria. This provides
another view of the likely behaviour of test suites that target
each of these coverage criteria with respect to the real-
world faults considered. Each region of the Venn diagram
corresponds to an intersection of different coverage criteria,
and the number recorded for each region indicates the number
of faults coupled by the corresponding intersection of criteria.
This allows us to investigate the faults that are uniquely
coupled by each criterion, and those coupled jointly by pairs,
triples and quadruples of criteria.

In the fault dataset we study there are 61 faults, 6 are not
coupled to any of the criteria and 18 are coupled to all four
criteria (the quadruple of criteria region depicted in the centre
of the Venn diagram). It is interesting that all faults cou-
pled by weak mutation are also coupled by strong mutation,
since strong mutation does not theoretically subsume weak
mutation. Branch coverage theoretically subsumes statement
coverage, but only when 100% of the feasible branches and
100% of the reachable statements are covered; there is no
theoretical relationship between partial branch coverage and
partial statement coverage. Therefore, it is interesting that, for
our partially adequate test suites, all faults are coupled with
statement coverage are also coupled with branch coverage. By
contrast, 3 faults coupled to branch coverage are not to weak
mutation (one of which is coupled to strong mutation), while
weak mutation has 5 faults coupled that are uncoupled with
branch coverage.

However, differences between statement, branch and weak
mutation are relatively small by comparison with the dif-
ferences we observe between strong mutation and the other
three criteria. Indeed, Figure 5 provides further compelling
evidence for the superiority of strong mutation testing over the
other coverage criteria. As can be seen, 21 faults are uniquely
coupled to strong mutation. That is, 21 faults are coupled to
strong mutation that are not coupled to any of the other criteria
(showing that strong mutation uniquely couples to 38% of
faults that are coupled to any of the four criteria). By contrast,
each of the other three criteria has no faults uniquely coupled,
and even considering all three together only have two faults
that are not coupled to strong mutation. These faults are only
coupled to branch and statement coverage.



VI. THREATS TO VALIDITY

As in every empirical study of programs, generalisation
remains an open question, requiring replication studies. We
used C utility programs. Programs written in other languages
and with different characteristics may behave differently. All
four programs we used are “well-specified, well-tested, well-
maintained, and widely-used open source programs with stan-
dardized program interfaces” [12] with bug reports that are
publicly accessible. Our results may generalise to other well-
specified, well-tested, well-maintained, and widely-used open
source C programs, but we have little evidence to generalise
beyond this. Additional work is required to replicate and
extend our results, but clearly any future work should either
avoid the Clean Program Assumption or first investigate its
veracity for the selected pool of subjects.

Another potential threat to the validity of our findings
derives from the representativeness of our fault data. We used
real faults, isolated by Böhme and Roychoudhury [12] and
used by other researchers [36], [54]. Since these faults were
found on well-tested widely-used programs, we believe that
they are representative of faults that are hard to find, but further
research is required to test this belief.

The use of automatically generated and manually aug-
mented test suites also poses a threat to generalisability. While
we cannot guarantee the representativeness of this practice, it
is desirable in order to perform experiments involving multiple
comparisons that use a good mix of tests that reveal (and
fail to reveal), the faults studied. We control for test suite
size and different levels of achievement of test adequacy, and
perform multiple samples of test suites to cater for diversity
and variability. Nevertheless, we cannot claim that the test
suites we used are necessarily representative of all possible
test suites.

We restricted our analysis to the system level testing, since
the developers’ tests suites were also system level tests and
we used a wide set of mutation operators, included in most of
the existing mutation testing tools, as suggested by previous
research [4], [30], [32], [49]. We view this as an advantage,
because, according to Gross et al. [41], applying testing at the
system level makes robust experimentation that reduces many
false alarms raised when applying testing on the unit level,
while focusing on a narrower set of mutation operators would
tend to increase threats to validity. However, this decision
means that our results do not necessarily extend to unit level
testing, nor to other sets of mutation operators.

All statements, branches and mutants that cannot be covered
(or killed) by any test in our test pool are treated as infeasible
(or as equivalent mutants). This is a common practice in this
kind of experiment [1], [4], [5], [55], because of the inherent
underlying decidability problem. However, it is also a potential
limitation of our study, like others. Furthermore, since we
observe a ‘threshold’ behaviour for strong mutation, it could
be that similar thresholds apply to statement branch and weak
mutation criteria, but these thresholds lie above our ability to
generate adequate test suites.

There may be other threats related to the implementation of
the tools, our data extraction and the measurements we chose
to apply, that we have not considered here. To enable explo-
ration of these potential threats and to facilitate replication and
extension of our work, we make available4 our tools and data.

VII. CONCLUSION

We present evidence that the Clean Program Assumption
does not always hold: there are often statistically significant
differences between coverage achieved by a test suite applied
to the clean (fixed) program and to each of its faulty versions,
and the effect sizes of such differences can be large. These
differences are important as they may change the conclusions
of experimental studies. According to our data, more faults
are coupled with weak mutation than branch testing in the
faulty programs but less in the clean ones. This finding means
that future empirical studies should either avoid the Clean
Program Assumption, or (at least) treat it as a potential
threat to the validity of their findings. The unreliability of
the Clean Program Assumption motivated us to reconsider the
relationship between four popular test adequacy criteria and
their fault revelation. We thus reported empirical results based
on an experimental methodology that benefits from enhanced
robustness (by avoiding the Clean Program Assumption).

In this study, we provide evidence to support the claim
that strong mutation testing yields high fault revelation, while
statement, branch and weak mutation testing enjoy no such
fault revealing ability. Our findings also revealed that only the
highest levels of strong mutation coverage attainment have
strong fault-revealing potential. An important consequence of
this observation is that testers will need to have first achieved
a threshold level of coverage before they can expect to receive
the benefit of increasing fault revelation with further increases
in coverage.

Future work includes studies and experiments aiming at
increasing the understanding of these fundamental aspects of
software testing. An emerging question regards the optimal
use of mutants when comparing testing methods, i.e., whether
methods should be applied on the original (clean) or on the
mutant versions of the programs. Similarly, the relation of
specific kinds of mutants, such as the subsuming [56] and hard
to kill [57] ones, with real faults and their actual contribution
within the testing process form other important aspects that
we plan to investigate.
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